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Abstract

Hlásny T.: Probabilistic approaches to ecological modeling. Ekológia (Bratislava), Vol. 25,
Supplement 1/2006, p. 66–75.

Current technologies provide comprehensive foundations for knowledge-based landscape
management, modeling of dynamic landscape processes, various approaches to the multicriteria
decision making for optimal land allocation, and temporal predictive and retrospective analyses
of various landscape states and properties. Common denominator of these approaches is that
require handling a substantial amount of data, which is often associated with uncertainties and
utilizing expert knowledge. In this contribution we focused on certain aspect of probabilistic
modeling with particular importance for landscape ecology. The contribution provides theoretical
foundations of the theory of regionalized variables and some parts of Bayesian Theory in the
view of ecological modeling. These approaches have been practically demonstrated in the biotopes
diversity evaluation case study and the results have been compared. In general, the theory of
regionalized variables focuses on spatial variability evaluation and on predicting values at
unrecorded positions, when the source data can be measured directly, whilst the Bayesian approach
provides modeling capabilities when only the indirect proofs on the phenomenon under
consideration is available.
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Introduction

Recent years have brought intensive development of all branches of natural sciences as had
never been noticed before. This primarily relates to the accelerated development of compu-
ter science progressively integrating into all fields of research. In the field of landscape
ecology emerging cross-cutting areas facilitated intensive development of new approaches
to ecological modeling, comprehensive spatio-temporal analyses and to effective multicriteria
decision techniques, especially for the optimal land allocation.
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In practice we distinguish variety of approaches to modeling – stochastic and determi-
nistic, (Isaaks, Srivastava, 1989), dynamic or static (Turner et al., 2001), mechanistic, proc-
ess-based (Goodchild et al., 1993), descriptive and prescriptive approaches (Tomlin, 1990)
and many others. Special kind of modeling, significantly important for landscape ecology,
is a spatial modeling, where spatial dimension plays a crucial rule. In landscape ecology
we often use different kinds of models – models approximating real biodiversity state,
models describing landscape suitability for certain ways of exploitation, dynamic models
describing how organisms behave under different conditions, or models of various land-
scape states and properties. Common denominator of these approaches is the term of model
– by definition, the abstraction or simplification of reality that helps to generate testable
hypotheses, which can be used to guide field studies by exploring conditions that cannot be
manipulated in the field (Turner et al., 2001). This means the biodiversity model provides
information about certain aspects of landscape structure generalized by means of diversity
index, landscape suitability model abstracts away from the real suitability depending on
number of factors involved, predictive models provide generalized information on expected
temporal behaviour of chosen landscape features and so forth. With regard to elusive land-
scape complexness, integrity and multidimensional nature, this facilitates all analyses and
explorations in a feasible way. In this regard Harvey (1969, p. 448) stated that “In reality
any system is infinitely complex and we can only analyze some system after we abstracted
from the real system”.

Probabilistic and deterministic modeling

Probabilistic modeling deals with the statistical probability of occurrence of certain
phenomenon. There are two important streams we focused on – geostatistical modeling,
which provide, among others, specific tools for spatial variability analysis and predicting
values at unrecorded locations, and Bayesian modeling, which derives the probability of
occurrence different phenomena by means of a set of indirect proofs. An important asset of
these approaches is an ability to involve uncertainties of both source data and individual
analyses. Probabilistic modeling is a counterpart of deterministic approach, which is based
on the exact knowledge of the most desirable information brought to bear on the problem
of modeling. By definition, there are three conditions that must be satisfied to make
a prediction in the deterministic realm – flawless models are required to characterize the
event of interest, assumption must be honored and all model parameters must be known
(Olea, 1999). Purely deterministic model has no stochastic part producing different results
under stable conditions and allow reasonable extrapolation beyond the available sampling.

Probabilistic models of any kind consist of two parts – so-called deterministic and
stochastic components. Deterministic component unambiguously describes the most typi-
cal features, or behaviour of the system under consideration. In the view of spatial modeling,
this might be analytically expressed by a polynomial function of certain degree. A general
term according to Ripley (1981) is as follows:
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where p expresses the order of the polynomial, z(xi) are available data points, r and s are
respective coefficients (Fig. 9). On the contrary, the stochastic part expresses the random
deviations from the deterministic trend – it originates in certain randomness of natural
systems and often-unpredictable influence of anthropogenic activities and natural hazards.

Geostatistical approach

In this part we focused on the theory that has been established in 60th, primarily for mining
purposes. At the beginnings, this approach had been termed the theory of regionalized
variables (Matheron, 1971), recently it has been changed onto the popular term of
geostatistics (e.g. Journel, Huijbregts, 1978). The main concept is that all processes and
structures are viewed as results of a random function z(x) that generates values at the points
xi over the considered spatial domain D. The random function consists of a set of spatially
autocorrelated random variables z(xi) (biodiversity values, soil pH, contamination etc.).
The set of random variables has a probability distribution function that describes relative
probability of occurrence for a range of possible values. Since we conceptualized mean
and variance of known source sample data set as the realizations of a random function, we
might assume that both random variables and source data have the same mean and vari-
ance. Under the assumption of random function stationarity, these parameters along with
distribution function provide basis for respective modeling – we are able to predict the
probability of occurrence certain values at certain positions.

Recently ecologists have begun to implement two geostatistical methods – variography,
which is one way to model spatial dependence, and kriging, which provides the estimates
for unrecorded locations (Rossi et al., 1992). The variography focuses on the evaluation
how spatial variability develops at specific distances and by specific directions (e.g. Errikson,
Šiška, 2000; Hlásny, 2005). The importance of this procedure outlined for example Pielou
(1977), who stated that ecological analysis normally includes the investigations of the dis-
persions and patterns in association between different species at different places and at
different times – patterns that reflects spatial dependence.

A basic tool for the spatial variability analysis – the variogram is in the terms of random
functions theory defined as the integral over the squared differences of random variables
z(xi) for a given lag h (separative distance). Thus,
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that gives the exactly defined theoretical (model) variogram over the domain D (Wacker-
nagel, 1998; Matheron, 1971).
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The kriging provides wide set of approaches to the estimation or prediction values at
unrecorded locations. The prediction strictly follows the results of variographic analysis,
hence all the information about the spatial variability are involved. In the terms of random
functions theory, geostatistical estimation is viewed as an outcome of random process cre-
ated by weighted linear combination of other random variables (Journel, Huijbregts, 1978;
Isaaks, Srivastava, 1989). A general form is

Z(x) = µ(x) + ε(x)

where µ(x) is a mean function and ε(x) is a random error process, having E(ε(x)) = 0. The
most frequently used ordinary kriging is given as:
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where Z(xi) is k
th random variables inside D, λ are respective weights. The weights λ are com-

puted with respect to variogram behavior, ensuring the prediction is unbiased (the sum of weight
is equal to 1) and it has the smallest mean square error of prediction (prediction variance). This
results in a smooth surface of the phenomenon considered. Besides, as we can predict values at
unrecorded locations, we can also derive the prediction variance that expresses the uncertainty
of resultant model (although, geostatistical simulation provide more effective approach to this).

Bayesian modeling

The second approach we briefly outline is the Bayesian Probability Theory, which provides
unique tools for modeling spatial phenomena. This is an extension of Classical Probability
Theory, which allows us to combine new evidences about a hypothesis along with prior knowl-
edge to arrive at an estimate of the likelihood that the hypothesis is true. A general concept is
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where p(h/e) expresses the probability of the hypothesis being true given the probability
(posterior probability), p(e/h) the probability of finding that evidence given the hypothesis
being true (conditional probability) and p(h) expresses the probability of the hypothesis
being true regardless of the evidence (prior probability) (Bernardo, Smith, 1994; Jaynes,
1996). The term of conditional probability refers to the set of proofs or supportive evi-
dences – the probabilities, which are interpreted as a degree of belief. Important concept is
that beliefs are always subjective, so that they are not an objective property of some physi-
cal setting, but they are conditional to the prior assumptions and experiences (Cox, 1946).
This approach is particularly useful, when direct measurement is impossible, or hardly
feasible. In such cases, the sets of indirect proofs are to be involved to assess the probability
of occurrence considered phenomenon or event.
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Case study

In this part we have compared the Bayesian and geostatistical approach to the biotopes
diversity evaluation in the Štiavnicke Bane (Central Slovakia) research area. Consequently,
respective deterministic and stochastic components have been analyzed. As source data the
results of field biotopes diversity measurement, model of landscape heterogeneity at the
terrain morphometry level (according to Hlásny, 2003) and research area road network
along with settled area border have been used. Biotopes diversity values are expressed in
the Shannon’s index units with the base of logarithm e. Landscape heterogeneity model at
the terrain morphometry level has been derived by means of moving window analysis (e.g.
Ripley, 1981) from the original morphometry model.

Geostatistical approach

To model the biotopes diversity spatial structure in the realm of geostatistics, all the measured
samples have been viewed as an outcome of a random process. On the bases of the set of
known random function realizations, respective covariance function has been derived. Source
data distribution and covariance function can be seen in the Figs. 1, 2. As can be seen, the
data are significantly autocorrelated up to the distance of 280 m. For the sake of simplicity,
the isotropical behaviour has been supposed. Furthermore, by means of linear weighted com-
bination of known realization of a random function, with respect to the variogram behaviour,
all the values at unrecorded locations have been predicted (Fig. 3).

As can be seen, the highest values follow the central part, what relates to the main
communication course and also to the highly diversified terrain morphometry (Fig. 6).

To asses the reliability (accuracy) of derived model the cross-validation procedure ac-
cording to Wackernagel (1998) has been accomplished. The cross-plot of observed vs.

Figs 1, 2. In the field measured realizations of a random function (biotopes diversity values) and its covariance
(expressed by spherical variogram with nugget effect). Symbols size expresses the magnitude of Shannon‘s index.



71

predicted values might be seen in the Fig. 4. Respective standardized error expressed in the
standard deviation units is 1.13 with the mean value of 0.031.

Bayesian approach

In spite of the fact that this approach is primarily aimed at modeling hidden phenomena, on the
bases of indirect proofs, we use the above problem to compare this solution with the geostatistical
approach. For the sake of simplicity we designed very simple hypothesis – higher biodiversity
values relate to the road network and to the settled area (prior probability), and to the highly

Figs 3, 4. Biotopes diversity model predicted on the bases of source data set in the Fig. 1 and respective scatter-
plot of true vs. predicted values (cross-validation procedure).

Figs 5, 6. The model of distance from settled area and the model of landscape heterogeneity at the terrain morphometry
level (according to Hlásny, 2003) derived from original morphometry by means of moving window analysis.
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diversified terrain (supportive
evidence, conditional probabil-
ity). This assumption is based on
previous research, where the cor-
relation coefficient of biotopes
diversity vs. distance from the
village was –0.417 and of
biodiversity vs. morphometry
0.711. The posterior probability
of higher biotopes diversity val-
ues occurrence is based on the
combination of prior probability
and available evidences by
means of the Bayesian rule
above.

In the context of spatial
modeling all these components can be represented by so-called probability surfaces (Figs
5, 6), which provide the information on respective probabilities taken on by all the posi-
tions of considered spatial domain. Prior and conditional probability models are expressed
in the range of 0–1, although the value of 1 does not need to be reached, if the uncertainty
due to the lack of confidence in data or hypothesis is to be expresses.

As can be seen, derived probability model is quite different from that derived using
kriging. In general, indirect proofs such as morphometry heterogeneity and distance from
the settled area and from the road network provide too unreliable evidences to models such
a complex phenomenon as the biotopes diversity. In spite of these facts, there are certain
features, which can be found to be similar. The most remarkable one is a higher values
occurrence in the central zone and low values at the edges of the study area. These similari-

ties have also affected the cor-
relation coefficient magnitude
of these two models that is of
0.397.

In order to synthesize the
results of both introduced ap-
proaches, the easy feasible ap-
proach is to combine all the
available data sources – to use
the geostatistical model as the
prior probability, and distance
from the settled area and from
the road network, and terrain
morphometry heterogeneity as
the supportive evidences. The

Fig. 7. The model of the posterior probability of high diversity
values occurrence.

Fig. 8. The model of the posterior probability of high diversity values
occurrence.
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result of this synthesis can be seen in the Fig. 8. As can be seen, the model reflects the features
of all prior and conditional probability models – the course of high values in the central zone
typical of both geostatistical and Bayesian model, accompanied by slightly decreasing trend,
along with remarkable fragmentation of central zone typical of terrain morphometry.

Stochastic and deterministic components

The decomposition of derived models into the deterministic and stochastic parts brings
unique sight on their structure and allows inferring theories on their genesis. To decompose
geostatistical and Bayesian models, the 3rd degree trend have been extracted. Furthermore,
the trend models have been subtracted from the original models to investigate visually the
residuals distribution (Fig. 9).

As can be seen, there are quite remarkable differences between respective trend models,
although certain common features can be found. The trend of geostatistical model shows
the course of highest diversity values passing from E to W, whilst the Bayesian model
values significantly decrease towards the SE part. As far as geostatistical model, this be-
haviour undoubtedly relates to the proved decreasing trend of diversity values from the
settled area outwards, whilst in the case of Bayesian model this behaviour might reflect
insufficient source data, or in general, incorrectly designed hypothesis. As far as residuals
component, this might be used to determine areas with significant proportion of stochasticity,
or on the contrary, those following the overall trend.

Fig. 9. The figure shows the trend components of both geostatistical and Bayesian model, respective residual
structure and residual’s histograms.
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Conclusion

In the paper we outlined the bases of geostatistics and Bayesian Probability Theory, two
diametrically different streams, providing capabilities for the modeling of different eco-
logical phenomena and processes. The approaches to spatial dependence analysis, predic-
tions at unrecorded locations and treating different supportive evidences as conditional
probabilities to support given hypotheses were described. A simple analysis aimed at
modeling biotopes diversity using these approaches was carried out. We proved the effec-
tiveness of selected statistical and mathematical tools integrated into a GIS environment
for landscape-ecological modeling and analyses. The difficulties associated with the intro-
duced modeling relate mainly to proper design of underlying hypothesis, requiring a great
portion of experience.

From the methodological view, there is a lot of derived forms of the approaches above,
developed to achieve more exhaustive data analysis – the kriging might deal with multivariate
data, provide non-linear estimations, or to work in a 3-dimensional space. Analogously,
the Bayesian Theory might be extended into the popular Decision Theory, which is much
more flexible in dealing with conditional probabilities. Furthermore, all these approaches
can be extended into the temporal dimension – to provide temporal predictions, analyze
time series stochastic and deterministic components, or to evaluate the causal aspect of
respective time series behaviour. All these approaches help understanding the variety of
natural phenomena and processes around in order to move the scope of the knowledge of
landscape.

Translated by the author
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Hlásny T.: Pravdepodobnostné prístupy k ekologickému modelovaniu.

Súčasné technológie vytvárajú komplexné základy pre manažment krajiny založený na syntéze množstva
čiastkových informácií, modelovanie dynamických procesov v krajine, rozličné prístupy k multikritériovému
rozhodovaniu pre optimálne využitie územia alebo pre časové prediktívne a retrospektívne analýzy rozličných
stavov a vlastností krajiny. Spoločným menovateľom týchto prístupov je potreba spracovávania mimoriadne
veľkých objemov údajov, ktoré sú často zaťažené istou mierou neurčitosti a vyžadujú integráciu expertných
znalostí. V príspevku sme sa zamerali na určité aspekty pravdepodobnostného modelovania s aplikáciami
v krajinnej ekológii. Uvádzame základy teórie regionalizovaných premenných a Bayesovej teórie v kontexte
krajinno-ekologického modelovania. Tieto prístupy sme prakticky demonštrovali pomocou prípadovej štúdie
hodnotenia diverzity krajiny na úrovni biotopov a výsledky sme porovnali. Vo všeobecnosti sa teória
regionalizovaných premenných zameriava na hodnotenie priestorovej variability analyzovaného systému
a predikciu hodnôt na nezmapovaných pozíciách v prípadoch, keď sa zdrojové údaje merajú priamo, kým využitie
Bayesovej teórie vytvára silný nástroj krajinno-ekologického modelovania v prípadoch, keď o charaktere
analyzovaného systému sú dostupné len nepriame dôkazy.


